Главная » Карбоновые кислоты » Химические свойства карбоновых кислот

Химические свойства карбоновых кислот



Для насыщенных монокарбоновых кислот характерна высокая реакционная способность. Они вступают в реакции с различными веществами и образуют разнообразные соединения, среди которых большое значение имеют функциональные производные, т.е. соединения, полученные в результате реакций по карбоксильной группе.

I. Реакции с разрывом связи О-Н

(кислотные свойства, обусловленные подвижностью атома водорода карбоксильной группы)

Предельные монокарбоновые кислоты обладают всеми свойствами обычных кислот.

Карбоновые кислоты изменяют окраску индикаторов.

1. Диссоциация 

В водных растворах монокарбоновые кислоты ведут себя как одноосновные кислоты: происходит их ионизация с образованием иона водорода и карбоксилат-иона:

Карбоновые кислоты являются слабыми кислотами. Наиболее сильной в гомологическом ряду насыщенных кислот является муравьиная кислота, в которой группа –СООН связана с атомом водорода.

Все карбоновые кислоты – слабые электролиты (НСООН – средней силы). Карбоновые кислоты проявляют все свойства минеральных кислот.

Карбоновые кислоты в целом – слабые кислоты: в водных растворах их соли сильно гидролизованы.

Сила кислот в гомологическом ряду уменьшается с ростом углеводородного радикала.

Видеоопыт «Растворимость в воде различных карбоновых кислот» Видеоопыт «Карбоновые кислоты — слабые электролиты»

2. Образование солей

Карбоновые кислоты реагируют с активными металлами, основными оксидами, основаниями и солями слабых кислот.

а) взаимодействие с активными металлами

Видеоопыт «Взаимодействие уксусной кислоты с металлами»

б) взаимодействие c ос­но­ва­ни­я­ми (реакция нейтрализации) Видеоопыт «Взаимодействие уксусной кислоты с раствором щелочи»

в) взаимодействие с ос­нов­ны­ми и амофтерными ок­си­да­ми

Видеоопыт «Взаимодействие уксусной кислоты с оксидом меди (II)»

г) взаимодействие с со­ля­ми более сла­бых кис­лот Видеоопыт «Взаимодействие уксусной кислоты с карбонатом натрия»

д) взаимодействие с аммиаком или гидроксидом аммония

Названия солей составляют из названий остатка RCOO– (карбоксилат-иона) и металла. Например, CH3COONa – ацетат натрия, (HCOO)2Ca – формиат кальция, C17H35COOK – стеарат калия и т.п.

Свойства солей карбоновых кислот

1) Взаимодействие с сильными кислотами

Карбоновые кислоты – слабые, поэтому сильные минеральные кислоты вытесняют их из соответствующих солей.

2) Гидролиз по аниону

Соли карбоновых кислот в водных растворах гидролизуются (среда солей щелочная).

Видеоопыт «Гидролиз ацетата натрия»

II. Реакции с разрывом связи C

(замещение ОН-группы)

Пониженная электронная плотность (δ+) на атоме углерода в карбоксильной группе обусловливает возможность реакций нуклеофильного замещения группы –ОН с образованием функциональных производных карбоновых кислот (сложных эфиров, амидов, ангидридов и галогенангидридов).

1. Взаимодействие со спиртами с образованием сложных эфиров (реакция этерификации)

2. Взаимодействие с аммиаком с образованием амидов

Амиды получают из карбоновых кислот и аммиака через стадию образования аммониевой соли, которую затем нагревают:

Вместо карбоновых кислот чаще используют их галогенангидриды:

Амиды образуются также при взаимодействии карбоновых кислот (их галогенангидридов или ангидридов) с органическими производными аммиака (аминами):

Амиды играют важную роль в природе. Молекулы природных пептидов и белков построены из a-аминокислот с участием амидных групп — пептидных связей.

3. Взаимодействие с галогенидами фосфора (PCl5, PCl3) с образованием галогенангидридов карбоновых кислот

4. Образование ангидридов кислот (межмолекулярная дегидратация)

Смешанные ангидриды карбоновых кислот можно получить при взаимодействии хлорангидрида одной кислоты и соли другой кислоты:

III. Реакции с разрывом связи C-Н у ɑ-углеродного атома (реакции с участием радикала)

1. Реакции замещения (с галогенами)

Атомы водорода у ɑ-углеродного атома более подвижны, чем другие атомы водорода в радикале кислоты и могут замещаться на атомы галогена с образование ɑ-галогенкарбоновых кислот:

IV. Реакции окисления (горение)

В атмосфере кислорода карбоновые кислоты окисляются до СО2 и Н2О:

Особенности строения и свойства муравьиной кислоты 

Муравьиная (метановая) кислота НСООН по своему строению и свойствам отличается от остальных членов гомологического ряда предельных монокарбоновых кислот.

В отличие от других карбоновых кислот в молекуле муравьиной кислоты функциональная карбоксильная группа 

связана не с углеводородным радикалом, а с атомом водорода. Поэтому муравьиная кислота является более сильной кислотой по сравнению с другими членами своего гомологического ряда.

Все предельные карбоновые кислоты устойчивы к действия концентрированной серной и азотной кислот. Но муравьиная кислота при нагревании с концентрированной серной кислотой разлагается на воду и монооксид углерода (угарный газ).

Разложение при нагревании

При нагревании с концентрированной H2SO4 муравьиная кислота разлагается на оксид углерода (II) и воду:

Видеоопыт «Разложение муравьиной кислоты»

Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу:

Поэтому муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Как и альдегиды, НСООН проявляет восстановительные свойства. Проявляя свойства альдегида, муравьиная кислота легко окисляется до угольной кислоты:

Муравьиная кислота окисляется аммиачным раствором Ag2О и гидроксидом меди (II) Cu (OH)2, т.е. дает качественные реакции на альдегидную группу.

Реакция «серебряного зеркала»

Окисление гидроксидом меди (II)

Окисление хлором

ЦОР

Видеоопыт  «Горение уксусной кислоты на воздухе»

Видеоопыт «Свойства карбоновых кислот»

Видеоопыт «Взаимодействие бромной воды с олеиновой кислотой»

Видеоопыт «Окисление муравьиной кислоты раствором перманганата калия»

Карбоновые кислоты




Написать комментарий

WP-SpamFree by Pole Position Marketing