Главная » Спирты » Химические свойства предельных одноатомных спиртов

Химические свойства предельных одноатомных спиртов



Химические свойства спиртов ROH определяются наличием полярных связей , и неподеленных электронных пар на атоме кислорода. В химических реакциях спиртов возможно разрушение одной из двух связей: C–OH (с отщеплением гидроксильной группы)

O–H (с отщеплением водорода)

Это могут быть реакции замещения, в которых происходит замена ОН или Н, или реакция отщепления (элиминирования), когда образуется двойная связь.

Полярный характер связей С–О и О–Н способствует гетеролитическому их разрыву и протеканию реакций по ионному механизму. При разрыве связи О–Н с отщеплением протона (Н+) проявляются кислотные свойства гидроксисоединения, а при разрыве связи С–О — свойства основания и нуклеофильного реагента.

С разрывом связи О–Н идут реакции окисления, а по связи С–Овосстановления.

Различают два основных типа реакций спиртов с участием функциональной группы –ОН:

1) Реакции с разрывом связи О-Н:

а) взаимодействие спиртов со щелочными металлами с образованием алкоголятов;

б) реакции спиртов с органическими и минеральными кислотами с образованием сложных эфиров;

в) окисление спиртов под действием дихромата или перманганата калия до карбонильных соединений.

2) Реакции сопровождающиеся разрывом связи С-О:

а) каталитическая дегидратация с образованием алкенов (внутримолекулярная дегидратация) или простых эфиров (межмолекулярная дегидратация);

б) замещение группы –ОН галогеном, например при действии галогеноводородов с образованием алкилгалогенидов.

Спирты – амфотерные соединения.

Реакции замещения

Кислотно-основные свойства Кислотные свойства уменьшаются в ряду, а основные возрастают:
Кислотные свойства

1. Взаимодействие со щелочными и щелочноземельными металлами (Li, Na, K, Ca, Ba, Sr)

Реакции с разрывом связи О-Н  

При действии на спирты активных металлов в безводной среде атом водорода гидроксильной группы замещается на металл:

Образующиеся соединения (соли спиртов) называются алкоголятами — производные метилового спирта – метилатами, производные этилового спирта – этилатами.

Видеоопыт «Взаимодействие спиртов с металлическим натрием»

Алкоголяты химически не стабильны и при действии воды они полностью гидролизуются с образованием исходного спирта и щелочи:

Эта реакция показывает, что спирты по сравнению с водой являются более слабыми кислотами (сильная кислота вытесняет слабую). При взаимодействии с растворами щелочей спирты не образуют алкоголяты.

Спирты не взаимодействуют с водными растворами щелочей.

Основные свойства

2.Взаимодействие с галогенводородными кислотами

Реакции с разрывом связи С-О

Замещение гидроксила ОН на галоген происходит в реакции спиртов с галогеноводородами в присутствии катализатора – сильной минеральной кислоты (например, конц. H2SO4). При этом спирты проявляют свойства слабых оснований:

Видеоопыт «Взаимодействие этилового спирта с бромоводородом»     

Реакции этерификации

Реакции с разрывом связи О-Н 

Спирты вступают в реакции с минеральными и органическими кислотами, образуя сложные эфиры. Реакция обратима (обратный процесс – гидролиз сложных эфиров).

Отличительной особенностью этой реакции является то, что атом Н отщепляется от спирта, а группа ОН – от кислоты: 

      

Реакционная способность одноатомных спиртов в этих реакциях убывает от первичных к третичным.

Реакции отщепления

1. Дегидратация (отщепление воды)

Реакции с разрывом связи С-О

При действии на спирты водоотнимающих реагентов, например, концентрированной серной кислоты, происходит отщепление воды – дегидратация.

Она может протекать по двум направлениям: с участием одной молекулы спирта (внутримолекулярная дегидратация, приводящая к образованию алкенов) или с участием двух молекул спирта (межмолекулярная дегидратация, приводящая к получению простых эфиров).

При переходе от первичных спиртов к третичным увеличивается склонность  к отщеплению воды и образованию алкенов и уменьшается способность образовывать простые эфиры.

а) Межмолекулярная дегидратация спиртов с образованием простых эфиров R-O-R'. Эти реакции могут протекать с участием одного спирта или смеси двух и более спиртов:

б) Внутримолекулярная дегидратация спиртов с образованием алкенов. Протекает при более высокой температуре. В отличие от межмолекулярной дегидратации в процессе этих реакций происходит отщепление молекулы воды от одной молекулы спирта:

Такие реакции отщепления называются реакциями элиминирования.

Первый член гомологического ряда алканолов – метанол СН3ОН – не вступает в реакции внутримолекулярной дегидратации.

Дегидратация вторичных и третичных спиртов происходит по правилу Зайцева:

2. Дегидрирование

Реакции с разрывом связей О-Н и С-Н

а) При дегидрировании первичных спиртов образуются альдегиды:

Реакция происходит при пропускании нагретых до 3000С паров спирта без доступа воздуха над металлическими катализаторами (Cu или металлы платиновой группы – Pd, Pt, Ni). Ni является типичным катализатором дегидрирования или гидрирования, т.е. отщепления или присоединения водорода.

В организме человека этот процесс происходит под действием (алкогольдегидрогеназы).

б) При дегидрировании вторичных спиртов образуются кетоны:

Третичные спирты не подвергаются дегидрированию.

Реакции окисления

Для спиртов характерны реакции горения с образованием углекислого газа и воды, а также реакции окисления, приводящие к получению альдегидов, кетонов и карбоновых кислот.

В лабораторных условиях для окисления спиртов обычно используют подкисленные растворы перманганата или дихромата калия, оксид меди и т.д.

1. Горение (полное окисление)

Спирты горят на воздухе с выделением большого количества тепла. С увеличением массы углеводородного радикала – пламя  становится всё более коптящим.

Видеоопыт «Горение спиртов»

При сгорании спиртов выделяется большое количество тепла:

Благодаря высокой экзотермичности реакции горения этанола, он считается перспективным и экологически чистым заменителем бензинового топлива в двигателях внутреннего сгорания. В этом случае энергия химических связей переходит в тепловую энергию, а затем в механическую, что позволяет двигаться автомобилям. В лабораторной практике этанол применяется как горючее для «спиртовок».

2. Неполное окисление

1). В присутствии окислителей [O] – K2Cr2O7 или KMnO4 спирты окисляются до карбонильных соединений:

Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот.

При окислении вторичных спиртов образуются кетоны.

Например:

Видеоопыт «Окисление этилового спирта раствором перманганата калия»

Видеоопыт «Окисление этилового спирта кристаллическим перманганатом калия»

Видеоопыт «Каталитическое окисление этанола»

Видеоопыт «Окисление этанола (тест на алкоголь)»

Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях (кислая среда, повышенная температура), что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов (карбоновых кислот и кетонов с меньшей молекулярной массой).

Качественные реакции на спирты

1. Окисление спиртов дихроматом (Na2Cr2O7) или перманганатом (КMnО4) - качественная реакция на первичные и вторичные спирты!   

В кислой среде

Окисление Na2Cr2O7

Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с раствором дихромата натрия. Для повышения скорости реакции ее проводят при нагревании, для создания кислой среды добавляют серную кислоту.

Первичные спирты окисляются дихроматом натрия до альдегидов.

Растворы дихроматов имеют оранжевый цвет и содержат хром в степени окисления +6. В кислой среде они переходят в растворы солей хрома в степени окисления +3 и приобретают зеленый цвет.

На изменении цвета соединений хрома также основана работа алкотестеров, когда пары спирта, содержащиеся в выдыхаемом водителем воздухе, восстанавливают дихромат в стеклянной трубочке.

Вторичные спирты окисляются дихроматом натрия до кетонов.

Третичные спирты в реакции с дихроматами не вступают.

Окисление KМnO4

Т.к. перманганат калия в кислой среде более сильный окислитель, чем дихромат, то окисление спирта не останавливается на стадии альдегида и продолжается дальше до карбоновой кислоты.

Раствор перманганата калия содержит марганец в степени окисления +7 и имеет розово-фиолетовый цвет. Если спирт взять в достаточном количестве, то произойдет обесцвечивание раствора. В кислой среде марганец перейдет в степень окисления +2.

Также как и дихроматом натрия, перманганатом калия вторичные спирты могут окисляться до кетонов. Далее возможна деструкция, т.е. разрушение органической молекулы и получение смеси веществ, которые не имеют практического применения.

В жёстких условиях с перманганатом калия третичные спирты окисляются с расщеплением связей С-С и образованием смеси веществ.

Метиловый спирт окисляется перманганатом калия до углекислого газа.

2. Окисление спиртов оксидом меди (II) качественная реакция на первичные спирты!

Первичные спирты окисляются оксидом меди (II) до альдегидов.

Видеоопыт  «Окисление этилового спирта оксидом меди (II)»

 

Видеоопыт «Качественная реакция на этанол»

Вторичные спирты окисляются оксидом меди (II) до кетонов.

Третичные спирты оксидом меди (II) не окисляются.

Реакции неполного окисления спиртов по своим результатам аналогичны реакциям дегидрирования.

Предельные одноатомные спирты




Написать комментарий