Наибольшие отличия полимеров от низкомолекулярных соединений и веществ немолекулярного строения проявляются в механических свойствах, в поведении растворов и в некоторых химических свойствах.
Особые механические свойства:
- эластичность— способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
- малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
- способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и пленок).
Особенности растворов полимеров:
- высокая вязкостьраствора при малой концентрации полимера;
- растворение полимера происходит через стадию набухания.
Особые химические свойства:
- способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т.п.).
Особые свойства полимеров объясняются не только большой молекулярной массой, но и тем, что макромолекулы имеют цепное строение и обладают уникальным для неживой природы свойством - гибкостью.
Гибкость макромолекул полимеров
Гибкость макромолекул — это их способность обратимо (без разрыва химических связей) изменять свою форму.
Причина гибкости — внутримолекулярное вращение по множеству σ-связей в цепной мaкромолекуле. Вращение по σ-связям в низкомолекулярных соединениях практически не изменяет их свойства. В длинных цепных макромолекулах повороты вокруг огромного числа σ-связей приводят к переходу количества в новое качество — гибкости макромолекул.
В зависимости от условий и своего строения цепная макромолекула может принимать форму клубка, вытянутой цепи, спирали, складчатой ленты и т.п. Геометрическая форма макромолекул (линейная, разветвленная или сетчатая) при этом не изменяется.
Особенности полимеров, обусловленные гибкостью макромолекул, проявляются при деформировании полимеров.
В отсутствие внешних воздействий равновесным состоянием гибкой макромолекулы является форма рыхлого клубка (максимум энтропии).
При деформации полимера макромолекулы распрямляются, а после снятия деформирующей нагрузки, стремясь к равновесному состоянию, они снова сворачиваются за счет поворотов вокруг σ-связей в результате теплового движения.
Это является причиной высоких обратимых деформаций (эластичности) полимеров.
Свободу внутримолекулярного вращения по σ-связям в цепных мaкромолекулах и, следовательно, степень их гибкости ограничивают внутри- и межмолекулярные взаимодействия (водородные связи, диполь-дипольные взаимодействия и т.п.), а также объемные заместители ( R).
Степень гибкости макромолекул определяет область применения полимеров.
Влияние гибкости на свойства полимеров
По степени гибкости полимеры подразделяют на гибкоцепные (с большей свободой внутримолекулярного вращения) и жесткоцепные.
Гибкоцепные полимеры используют как каучуки (резиновые изделия), жесткоцепные — в производстве пластмасс, волокон, пленок.
Гибкость макромолекул уменьшается под влиянием внутри- и межмолекулярных взаимодействий, которые препятствуют вращению по σ-связям. Например:
Поэтому капрон и поливинилхлорид относятся к жесткоцепным полимерам.
При кристаллизации полимера усиливаются межмолекулярные взаимодействия и его гибкость (эластичность) уменьшается. По этой причине легко кристаллизующийся полиэтилен не проявляет свойств каучука.
Источник http://orgchem.ru
Высокомолекулярные соединения (ВМС)